张量积

编辑:包袱网互动百科 时间:2020-04-08 06:50:08
编辑 锁定
在数学中,张量积(tensor product),记为 ,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积
中文名
张量积
外文名
tensor product
运用范围
数学
向量空间范畴
对象之间的同态都是线性映射

张量积定义

编辑
结果的秩为1, 结果的维数为 4×3 = 12.
这里的秩指示张量秩(所需指标数),而维数计算在结果数组(阵列)中自由度的数目;矩阵的秩是 1。
代表情况是任何两个被当作矩阵的矩形数组的克罗内克积。在同维数的两个向量之间的张量积的特殊情况是并矢积。

张量积两个向量空间的张量积

编辑
向量空间范畴,对象之间的同态都是线性映射。但其实我们经常会碰到 “双线性映射” 这种概念,比如内积就是一个双线性映射 V x V --> C. 我们希望把 “双线性” 这种性质归于向量空间范畴。一个办法就是,构造一个跟 V, W 有关的向量空间 Z,使得所有定义在 V x W 上的 “双线性映射” 都可以由 “唯一” 一个定义在 Z 上的 “线性映射” 来代替。这个 Z 就叫 V 和 W 的张量积。

张量积应用发展

编辑
后来的发展表明,“张量积” 可以扩展到一般范畴。凡是在范畴中多个对象得到一个对象,并满足一定结合规则和交换规则的操作都可以视为 “张量积”,比如集合的笛卡儿积,无交并,拓扑空间的乘积,等等,都可以被称为张量积。带有张量积操作的范畴叫做 “张量范畴”。张量范畴现在被视为量子不变量理论的形式化,从而应该同量子场论,弦论都有深刻的联系。
矢积 矢积
词条标签:
科学 理学 学科